Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Metab Eng ; 80: 66-77, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709005

RESUMO

Chinese hamster ovary (CHO) cells are the preferred mammalian host cells for therapeutic protein production that have been extensively engineered to possess the desired attributes for high-yield protein production. However, empirical approaches for identifying novel engineering targets are laborious and time-consuming. Here, we established a genome-wide CRISPR/Cas9 screening platform for CHO-K1 cells with 111,651 guide RNAs (gRNAs) targeting 21,585 genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a positive selection screening under hyperosmotic stress conditions and identified 180 genes whose perturbations conferred resistance to hyperosmotic stress in CHO cells. Functional enrichment analysis identified hyperosmotic stress responsive gene clusters, such as tRNA wobble uridine modification and signaling pathways associated with cell cycle arrest. Furthermore, we validated 32 top-scoring candidates and observed a high rate of hit confirmation, demonstrating the potential of the screening platform. Knockout of the novel target genes, Zfr and Pnp, in monoclonal antibody (mAb)-producing recombinant CHO (rCHO) cells and bispecific antibody (bsAb)-producing rCHO cells enhanced their resistance to hyperosmotic stress, thereby improving mAb and bsAb production. Overall, the collective findings demonstrate the value of the screening platform as a powerful tool to investigate the functions of genes associated with hyperosmotic stress and to discover novel targets for rational cell engineering on a genome-wide scale in CHO cells.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Cricetinae , Animais , Cricetulus , Células CHO , Genoma , Anticorpos Monoclonais
2.
Cell Rep Methods ; 1(4)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935002

RESUMO

Pooled CRISPR screens have been widely applied to mammalian and other organisms to elucidate the interplay between genes and phenotypes of interest. The most popular method for delivering the CRISPR components into mammalian cells is lentivirus based. However, because lentivirus is not always an option, virus-free protocols are starting to emerge. Here, we demonstrate an improved virus-free, genome-wide CRISPR screening platform for Chinese hamster ovary cells with 75,488 gRNAs targeting 15,028 genes. Each gRNA expression cassette in the library is precisely integrated into a genomic landing pad, resulting in a very high percentage of single gRNA insertions and minimal clonal variation. Using this platform, we perform a negative selection screen on cell proliferation that identifies 1,980 genes that affect proliferation and a positive selection screen on the toxic endoplasmic reticulum stress inducer, tunicamycin, that identifies 77 gene knockouts that improve survivability.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Cricetinae , Sistemas CRISPR-Cas/genética , Células CHO , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Cricetulus , Genoma , Lentivirus/genética
3.
Biotechnol Rep (Amst) ; 31: e00649, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34277363

RESUMO

Chinese hamster ovary (CHO) cells are the most widely used host for the expression of therapeutic proteins. Recently, significant progress has been made due to advances in genome sequence and annotation quality to unravel the black box CHO. Nevertheless, in many cases the link between genotype and phenotype in the context of suspension cultivated production cell lines is still not fully understood. While frameshift approaches targeting coding genes are frequently used, the non-coding regions of the genome have received less attention with respect to such functional annotation. Importantly, for non-coding regions frameshift knock-out strategies are not feasible. In this study, we developed a CRISPR-mediated screening approach that performs full deletions of genomic regions to enable the functional study of both the translated and untranslated genome. An in silico pipeline for the computational high-throughput design of paired guide RNAs (pgRNAs) directing CRISPR/AsCpf1 was established and used to generate a library tackling process-related genes and long non-coding RNAs. Next generation sequencing analysis of the plasmid library revealed a sufficient, but highly variable pgRNA composition. Recombinase-mediated cassette exchange was applied for pgRNA library integration rather than viral transduction to ensure single copy representation of pgRNAs per cell. After transient AsCpf1 expression, cells were cultivated over two sequential batches to identify pgRNAs which massively affected growth and survival. By comparing pgRNA abundance, depleted candidates were identified and individually validated to verify their effect.

4.
NAR Genom Bioinform ; 3(3): lqab061, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34268494

RESUMO

Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.

5.
Metab Eng ; 66: 114-122, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33813034

RESUMO

Media and feed optimization have fueled many-fold improvements in mammalian biopharmaceutical production, but genome editing offers an emerging avenue for further enhancing cell metabolism and bioproduction. However, the complexity of metabolism, involving thousands of genes, makes it unclear which engineering strategies will result in desired traits. Here we present a comprehensive pooled CRISPR screen for CHO cell metabolism, including ~16,000 gRNAs against ~2500 metabolic enzymes and regulators. Using this screen, we identified a glutamine response network in CHO cells. Glutamine is particularly important since it is often over-fed to drive increased TCA cycle flux, but toxic ammonia may accumulate. With the screen we found one orphan glutamine-responsive gene with no clear connection to our network. Knockout of this novel and poorly characterized lipase, Abhd11, substantially increased growth in glutamine-free media by altering the regulation of the TCA cycle. Thus, the screen provides an invaluable targeted platform to comprehensively study genes involved in any metabolic trait, and elucidate novel regulators of metabolism.


Assuntos
Sistemas CRISPR-Cas , Glutamina , Animais , Células CHO , Cricetinae , Cricetulus , Edição de Genes , Glutamina/genética , Glutamina/metabolismo
7.
Nat Commun ; 11(1): 1908, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313013

RESUMO

Host cell proteins (HCPs) are process-related impurities generated during biotherapeutic protein production. HCPs can be problematic if they pose a significant metabolic demand, degrade product quality, or contaminate the final product. Here, we present an effort to create a "clean" Chinese hamster ovary (CHO) cell by disrupting multiple genes to eliminate HCPs. Using a model of CHO cell protein secretion, we predict that the elimination of unnecessary HCPs could have a non-negligible impact on protein production. We analyze the HCP content of 6-protein, 11-protein, and 14-protein knockout clones. These cell lines exhibit a substantial reduction in total HCP content (40%-70%). We also observe higher productivity and improved growth characteristics in specific clones. The reduced HCP content facilitates purification of a monoclonal antibody. Thus, substantial improvements can be made in protein titer and purity through large-scale HCP deletion, providing an avenue to increased quality and affordability of high-value biopharmaceuticals.


Assuntos
Engenharia Metabólica/métodos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos , Células CHO , Cromatografia , Cricetulus , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rituximab , Biologia Sintética
8.
Metab Eng ; 57: 182-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785386

RESUMO

Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2-44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.


Assuntos
Fator de Indução de Apoptose/genética , Técnicas de Cultura Celular por Lotes , Eritropoetina , Técnicas de Silenciamento de Genes , Neuraminidase/genética , Animais , Células CHO , Cricetulus , Eritropoetina/biossíntese , Eritropoetina/genética , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
9.
Biotechnol Bioeng ; 117(2): 593-598, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631317

RESUMO

Chinese hamster ovary (CHO) cells are the preferred workhorse for the biopharmaceutical industry, and CRISPR/Cas9 has proven powerful for generating targeted gene perturbations in CHO cells. Here, we expand the CRISPR engineering toolbox with CRISPR activation (CRISPRa) to increase transcription of endogenous genes. We successfully increased transcription of Mgat3 and St6gal1, and verified their activity on a functional level by subsequently detecting that the appropriate glycan structures were produced. This study demonstrates that CRISPRa can make targeted alterations of CHO cells for desired phenotypes.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Glicosiltransferases/genética , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Fenótipo , Polissacarídeos/análise , Polissacarídeos/química
10.
Metab Eng ; 56: 120-129, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526854

RESUMO

Chinese hamster ovary (CHO) cells are the preferred host for producing biopharmaceuticals. Amino acids are biologically important precursors for CHO metabolism; they serve as building blocks for proteogenesis, including synthesis of biomass and recombinant proteins, and are utilized for growth and cellular maintenance. In this work, we studied the physiological impact of disrupting a range of amino acid catabolic pathways in CHO cells. We aimed to reduce secretion of growth inhibiting metabolic by-products derived from amino acid catabolism including lactate and ammonium. To achieve this, we engineered nine genes in seven different amino acid catabolic pathways using the CRISPR-Cas9 genome editing system. For identification of target genes, we used a metabolic network reconstruction of amino acid catabolism to follow transcriptional changes in response to antibody production, which revealed candidate genes for disruption. We found that disruption of single amino acid catabolic genes reduced specific lactate and ammonium secretion while specific growth rate and integral of viable cell density were increased in many cases. Of particular interest were Hpd and Gad2 disruptions, which show unchanged AA uptake rates, while having growth rates increased up to 19%, and integral of viable cell density as much as 50% higher, and up to 26% decrease in specific ammonium production and to a lesser extent (up to 22%) decrease in lactate production. This study demonstrates the broad potential of engineering amino acid catabolism in CHO cells to achieve improved phenotypes for bioprocessing.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Reprogramação Celular , Edição de Genes , Redes e Vias Metabólicas/genética , Animais , Células CHO , Cricetulus
11.
J Biotechnol ; 306: 24-31, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31465797

RESUMO

In recombinant protein expression using Chinese hamster ovary (CHO) cells, chemically defined media contain essential amino acids such as branched chain amino acids (BCAAs) leucine, isoleucine and valine. Availability of amino acids is critical as these are building blocks for protein synthesis. However, breakdown of amino acids can lead to build up of toxic intermediates and metabolites that decrease cell growth, productivity and product quality. BCAA catabolism also hampers the usage of BCAAs for protein synthesis. In this work we studied the effects of disrupting the genes responsible for the first step of BCAA catabolism: branched chain aminotransferase 1 (Bcat1) and branched chain aminotransferase 2 (Bcat2). We evaluated the effect of disrupting the genes individually and in combination, and examined the effects in producer and non-producer host cells. Our experiments show that Bcat1 disruption improves cell growth in producer cells, but not in non-producers. Conversely, Bcat2 has a minor negative effect on growth in producer cells, and none in non-producers. Combined Bcat1 and Bcat2 disruption improves growth in producer cells. By-product metabolism is cell line-, clone- and producer-dependent. Overall, our results show that the effects of targeting Bcat1 and/or Bcat2 are cell line-dependent, and seemingly linked to the burden of recombinant protein expression.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Transaminases/metabolismo , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Cricetulus , Meios de Cultura/metabolismo , Mutação , Biossíntese de Proteínas , Transaminases/genética
12.
Biotechnol Bioeng ; 116(7): 1813-1819, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883679

RESUMO

Chinese hamster ovary (CHO) cells are widely used for biopharmaceutical protein production. One challenge limiting CHO cell productivity is apoptosis stemming from cellular stress during protein production. Here we applied CRISPR interference (CRISPRi) to downregulate the endogenous expression of apoptotic genes Bak, Bax, and Casp3 in CHO cells. In addition to reduced apoptosis, mitochondrial membrane integrity was improved and the caspase activity was reduced. Moreover, we optimized the CRISPRi system to enhance the gene repression efficiency in CHO cells by testing different repressor fusion types. An improved Cas9 repressor has been identified by applying C-terminal fusion of a bipartite repressor domain, KRAB-MeCP2, to nuclease-deficient Cas9. These results collectively demonstrate that CHO cells can be rescued from cell apoptosis by targeted gene repression using the CRISPRi system.


Assuntos
Apoptose/genética , Sistemas CRISPR-Cas , Caspase 3 , Marcação de Genes , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2 , Animais , Células CHO , Proteína 9 Associada à CRISPR/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Cricetulus , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
13.
Trends Biotechnol ; 37(9): 931-942, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30898338

RESUMO

Mammalian expression platforms are primary production systems for therapeutic proteins that require complex post-translational modifications. Current processes used for developing recombinant mammalian cell lines generate clonal cell lines with high phenotypic heterogeneity, which has puzzled researchers that use mammalian cell culture systems for a long time. Advances in mammalian genome-editing technologies and systems biotechnology have shed light on clonal variation and enabled rational cell engineering in a targeted manner. We propose a new approach for a next-generation cell line development platform that can minimize clonal variation. Combined with the knowledge-based selection of ideal integration sites and engineering targets, targeted integration-based cell line development will allow tailored control of recombinant gene expression with predicted phenotypes.


Assuntos
Engenharia Celular/métodos , Edição de Genes , Engenharia Genética/métodos , Animais , Linhagem Celular , Mamíferos , Proteínas Recombinantes/metabolismo
14.
Methods Mol Biol ; 1961: 213-232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912048

RESUMO

The emergence of CRISPR/Cas9 system as a precise and affordable method for genome editing has prompted its rapid adoption for the targeted integration of transgenes in Chinese hamster ovary (CHO) cells. Targeted gene integration allows the generation of stable cell lines with a controlled and predictable behavior, which is an important feature for the rational design of cell factories aimed at the large-scale production of recombinant proteins. Here we present the protocol for CRISPR/Cas9-mediated integration of a gene expression cassette into a specific genomic locus in CHO cells using homology-directed DNA repair.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma/genética , Animais , Células CHO , Cricetinae , Cricetulus
15.
ACS Synth Biol ; 8(4): 758-774, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30807689

RESUMO

Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.


Assuntos
Expressão Gênica/genética , Mamíferos/genética , Proteínas Recombinantes/genética , Animais , Células CHO , Sistemas CRISPR-Cas/genética , Engenharia Celular/métodos , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Cricetulus , Recombinases/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética
16.
Metab Eng ; 52: 143-152, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513349

RESUMO

Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is generally a cost-intensive process and also harbors a risk of transmitting infectious particles. Recombinantly produced A1AT and C1INH (rhA1AT, rhC1INH) decorated with humanized N-glycans are therefore of clinical and commercial interest. Here, we present engineered CHO cell lines producing rhA1AT or rhC1INH with fully humanized N-glycosylation profiles. This was achieved by combining CRISPR/Cas9-mediated disruption of 10 gene targets with overexpression of human ST6GAL1. We were able to show that the N-linked glyco-structures of rhA1AT and rhC1INH are homogeneous and similar to the structures obtained from plasma-derived A1AT and C1INH, marketed as Prolastin®-C and Cinryze®, respectively. rhA1AT and rhC1INH produced in our glyco-engineered cell line showed no detectable differences to their plasma-purified counterparts on SDS-PAGE and had similar enzymatic in vitro activity. The work presented here shows the potential of expanding the glyco-engineering toolbox for CHO cells to produce a wider variety of glycoproteins with fully humanized N-glycan profiles. We envision replacing plasma-derived A1AT and C1INH with recombinant versions and thereby decreasing our dependence on human donor blood, a limited and possibly unsafe protein source for patients.


Assuntos
Células CHO/metabolismo , Proteína Inibidora do Complemento C1/biossíntese , Engenharia Metabólica/métodos , alfa 1-Antitripsina/biossíntese , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Glicosilação , Humanos , Proteínas Recombinantes/biossíntese , Sialiltransferases/biossíntese , Sialiltransferases/genética
17.
ACS Synth Biol ; 7(12): 2867-2878, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30388888

RESUMO

Generation of recombinant Chinese hamster ovary (rCHO) cell lines is critical for the production of therapeutic proteins. However, the high degree of phenotypic heterogeneity among generated clones, referred to as clonal variation, makes the rCHO cell line development process inefficient and unpredictable. Here, we investigated the major genomic causes of clonal variation. We found the following: (1) consistent with previous studies, a strong variation in rCHO clones in response to hypothermia (33 vs 37 °C) after random transgene integration; (2) altered DNA sequence of randomly integrated cassettes, which occurred during the integration process, affecting the transgene expression level in response to hypothermia; (3) contrary to random integration, targeted integration of the same expression cassette, without any DNA alteration, into three identified integration sites showed the similar response of transgene expression in response to hypothermia, irrespective of integration site; (4) switching the promoter from CMV to EF1α eliminated the hypothermia response; and (5) deleting the enhancer part of the CMV promoter altered the hypothermia response. Thus, we have revealed the effects of integration methods and cassette design on transgene expression levels, implying that rCHO cell line generation can be standardized through detailed genomic understanding. Further elucidation of such understanding is likely to have a broad impact on diverse fields that use transgene integration, from gene therapy to generation of production cell lines.


Assuntos
Edição de Genes/métodos , Transgenes/genética , Animais , Células CHO , Cricetinae , Cricetulus , Citomegalovirus/genética , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Temperatura
18.
ACS Synth Biol ; 7(9): 2148-2159, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30060646

RESUMO

Mammalian cells are widely used to express genes for basic biology studies and biopharmaceuticals. Current methods for generation of engineered cell lines introduce high genomic and phenotypic diversity, which hamper studies of gene functions and discovery of novel cellular mechanisms. Here, we minimized clonal variation by integrating a landing pad for recombinase-mediated cassette exchange site-specifically into the genome of CHO cells using CRISPR and generated subclones expressing four different recombinant proteins. The subclones showed low clonal variation with high consistency in growth, transgene transcript levels and global transcriptional response to recombinant protein expression, enabling improved studies of the impact of transgenes on the host transcriptome. Little variation over time in subclone phenotypes and transcriptomes was observed when controlling environmental culture conditions. The platform enables robust comparative studies of genome engineered CHO cell lines and can be applied to other mammalian cells for diverse biological, biomedical and biotechnological applications.


Assuntos
Engenharia Celular , Proteínas Recombinantes/metabolismo , Biologia de Sistemas/métodos , Animais , Células CHO , Sistemas CRISPR-Cas/genética , Cricetinae , Cricetulus , Eritropoetina/genética , Eritropoetina/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Transcrição Gênica , Transcriptoma
19.
Biotechnol J ; 13(10): e1800111, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29862652

RESUMO

In production of recombinant proteins for biopharmaceuticals, N-glycosylation is often important for protein efficacy and patient safety. IgG with agalactosylated (G0)-N-glycans can improve the activation of the lectin-binding complement system and be advantageous in the therapy of lupus and virus diseases. In this study, the authors aimed to engineer CHO-S cells for the production of proteins with G0-N-glycans by targeting B4Gal-T isoform genes with CRISPR/Cas9. Indel mutations in genes encoding B4Gal-T1, -T2, and -T3 with and without a disrupted B4Gal-T4 sequence resulted in only ≈1% galactosylated N-glycans on total secreted proteins of 3-4 clones per genotype. The authors revealed that B4Gal-T4 is not active in N-glycan galactosylation in CHO-S cells. In the triple-KO clones, transiently expressed erythropoietin (EPO) and rituximab harbored only ≈6% and ≈3% galactosylated N-glycans, respectively. However, simultaneous disruption of B4Gal-T1 and -T3 may decrease cell growth. Altogether, the authors present the advantage of analyzing total secreted protein N-glycans after disrupting galactosyltransferases, followed by expressing recombinant proteins in selected clones with desired N-glycan profiles at a later stage. Furthermore, the authors provide a cell platform that prevalently glycosylates proteins with G0-N-glycans to further study the impact of agalactosylation on different in vitro and in vivo functions of recombinant proteins.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Polissacarídeos , Proteínas Recombinantes , Animais , Células CHO , Cricetulus , Expressão Gênica , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
20.
Biotechnol J ; 13(3): e1700499, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29393587

RESUMO

For over three decades, Chinese hamster ovary (CHO) cells have been the chosen expression platform for the production of therapeutic proteins with complex post-translational modifications. However, the metabolism of these cells is far from perfect and optimized, and requires substantial know how and process optimization and monitoring to perform efficiently. One of the main reasons for this is the production and accumulation of toxic and growth-inhibiting metabolites during culture. Lactate and ammonium are the most known, but many more have been identified. In this review, an overview of metabolites that deplete and accumulate throughout the course of cultivations with toxic and growth inhibitory effects to the cells is presented. Further, an overview of the CHO metabolism with emphasis to metabolic pathways of amino acids, glutathione (GSH), and related compounds which have growth-inhibiting and/or toxic effect on the cells is provided. Additionally, relevant publications which describe the applications of metabolomics as a powerful tool for revealing which reactions occur in the cell under certain conditions are surveyed and growth-inhibiting and toxic metabolites are identified. Also, a number of resources that describe the cellular mechanisms of CHO and are available on-line are presented. Finally, the application of this knowledge for bioprocess and medium development and cell line engineering is discussed.


Assuntos
Células CHO/metabolismo , Técnicas de Cultura de Células/métodos , Metabolômica , Proteínas Recombinantes/biossíntese , Aminoácidos/metabolismo , Animais , Cricetinae , Cricetulus , Alimentos , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA